= Neo4j Postgres integration image:https://travis-ci.org/sim51/neo4j-fdw.svg?branch=master["Build Status", link="https://travis-ci.org/sim51/neo4j-fdw"] == Purpose Neo4jPg is a foreign data wrapper for Postgresql. It can be used to access data stored into Neo4j from Postgresql. Moreover, you can directly write a cypher query in your select. == Compatibility matrice === Dependencies The project has two main dependencies https://github.com/Segfault-Inc/Multicorn[Multicorn] and https://github.com/neo4j/neo4j-python-driver/[Neo4j Python driver]. Multicorn is used for the Postgres FDW layer, so the compatibility with postgres versions depends on it : [cols=3*,options=header] |=== | Multicorn | Postgres | Python | 0.9.1 | 9.1 | >= 2.6 & < 3.0 | 1.x | >= 9.2 | 2.6 or >= 3.3 | 1.3.4 | >= 9.2 and =<10 | 2.7 or >= 3.6 | 1.4.0 | >= 9.2 and <=12 | 2.7 or >= 3.6 |=== The Neo4j driver is used for the communication with Neo4j, so the compatibility with Neo4j versions depends on it : [cols=3*,options=header] |=== | Neo4j Driver | Neo4j Server | Python | 1.x | 3.X | 2.7, 3.4, 3.5, 3.6, and 3.7 | 1.7 | 3.X, 4.0 and 4.1 | 2.7, 3.4, 3.5, 3.6, and 3.7 | 4.x | 3.5 and >= 4.0 | 3.5, 3.6, and 3.7 |=== NOTE: Each Neo4j driver release (from 4.0 upwards) is built specifically to work with a corresponding Neo4j release, i.e. that with the same major.minor version number. === Version of neo4j-fdw The version *1.1.x* of the project are based on MultiCorn *1.3.4* and the Neo4j driver *<= 1.7* Upper versions are based on MultiCorn *1.4.0* To simplify the understanding of the compatibilty, the project now follows the Neo4j driver version (that's why There is no 2.X & 3.X). The major & minor version of the project will be linked to the Neo4j driver version, so *4.0.Z* means that's the project is using the version *4.0* of the driver. IMPORTANT: The current version (*4.0.0*) requires python *>= 3.3* and is compatible with Neo4j *3.5* & *4.0* and Pg *9.2* to *12*. == How to install === With PGXN Just type those commands : ---- $> sudo pgxn install multicorn $> sudo pgxn install neo4j-fdw ---- Easy, no ? NOTE: If you have some troubles, please check that all the project dependencies are installed by PGXN (specially the neo4j driver : `pip install neo4j`). === From the sources ==== Requirements There is some Postgresql & Python requirements to use this project : * Postgresql >= 9.1 * postgresql-plpython * Postgresql development packages * Python development packages * python 3.3 or >= as your default python with pip On a debian system, you can directly type this command : ---- $> sudo apt-get install build-essential postgresql-server-dev-10 python3-dev python3-setuptools python3-pip postgresql-plpython3-10 ---- ==== Installing multicorn This project is based on Multicorn, so you have to install it. ---- $> cd /tmp $> git clone git://github.com/Kozea/Multicorn.git $> cd Multicorn $> git checkout tags/v1.4.0 $> make && make install ---- When it's done, you have to enable the extension in your PostgreSQL database. ---- $> sudo su - postgres $> psql mydatabase=# CREATE EXTENSION multicorn; CREATE EXTENSION mydatabase=# \q ---- ==== Neo4j FDW You can find The Neo4j foreign data wrapper here : https://github.com/sim51/neo4j-fwd Clone the repository ---- $> git clone https://github.com/sim51/neo4j-fwd ---- Install the project ---- $> cd neo4j-fdw $> python setup.py install ---- At this point, everything is done to use Neo4j in Postgresql ! == How to use the Foreign Data Wrapper === Create a neo4j server First step, you have to create a foreign server in Postgres : ---- mydatabase=# CREATE SERVER multicorn_neo4j FOREIGN DATA WRAPPER multicorn OPTIONS ( wrapper 'neo4jPg.neo4jfdw.Neo4jForeignDataWrapper', url 'neo4j://172.17.0.1:7687', user 'neo4j', password 'admin' ); ---- Connection options are * `url` The neo4j url for Neo4j (default is neo4j://localhost:7687) * `user` User for Neo4j * `password` password of the Neo4j user === Create a foreign table Now you can create a foreign table that match a cypher query. IMPORTANT: Your cypher query must return a collection, and you have to give an alias on each return variable. NOTE: You can specify the neo4j database name. If itis omitted, the default value is 'neo4j' ---- mydatabase=# CREATE FOREIGN TABLE neo4j_movie ( movie varchar ) SERVER multicorn_neo4j OPTIONS ( cypher 'MATCH (n:Movie) RETURN n.title as movie', database 'neo4j' ); ---- === Filtering the data `quals` are pushed to the remote database when it's possible. This include simple operators like : * equality, inequality (=, <>, >, <, <=, >=) * like, ilike and their negations If you have defined your foreign table with this query `MATCH (n:Movie) RETURN n.title as movie`, this FDW will push all your WHERE clause directly to Neo4j by generating a cypher query that looks like to this : `MATCH (n:Movie) WITH n.title as movie WHERE ... RETURN movie`; In fact it replaces the `RETURN` part of your query by a `WITH ... WHERE ... RETURN`. It works, but it's not optimised ... To optimise the `WHERE` clause in the generated cypher query, you can define a *WHERE placeholder* in the cypher definition of your foreign table Example : ---- CREATE FOREIGN TABLE actedIn ( actor varchar NOT NULL, born smallint, movie varchar NOT NULL ) SERVER multicorn_neo4j OPTIONS ( cypher 'MATCH (p:Person) /*WHERE{"actor":"p.name", "born":"p.born"}*/ WITH p MATCH (p)-[:ACTED_IN]->(m:Movie) /*WHERE{"movie":"m.title"}*/ RETURN p.name AS actor, p.born AS born, m.title AS movie' ); ---- In this example you can see two where placeholders : `/\*WHERE{"actor":"p.name", "born":"p.born"}*/` & `/\*WHERE{"movie":"m.title"}*/` A placeholder is defined by `/\*WHERE{ ... }*/` (please respect the cast, it's a strict match). Then inside, you have to define the cypher field name of the SQL field. With those information, the plugin know how to put the where clause in your cypher query. So this SQL query : ---- SELECT * FROM actedIn WHERE born > 1980 AND movie = "The Matrix" ---- Will generate this cypher query : ---- MATCH (p:Person) WHERE p.born > 1980 WITH p MATCH (p)-[:ACTED_IN]->(m:Movie) WHERE m.title = "The Matrix" RETURN p.name AS actor, p.born AS born, m.title AS movie ---- == Make cypher query into a sql select This project also define a cool postgres function `cypher`, that allow you to write a cypher query into a select. Example : `SELECT * FROM cypher('MATCH (n)-[r]->(m) RETURN n,r,m LIMIT 10')` The `cypher` function returns a postgres JSON type. === Create the functions into your database You have to declare those functions into your database, before to use it. ---- mydatabase=# CREATE EXTENSION plpythonu3; mydatabase=# CREATE OR REPLACE FUNCTION cypher(query text) RETURNS SETOF json LANGUAGE plpythonu3 AS $$ from neo4jPg import neo4jPGFunction for result in neo4jPGFunction.cypher_default_server(plpy, query, '{}'): yield result $$; CREATE OR REPLACE FUNCTION cypher(query text, params text) RETURNS SETOF json LANGUAGE plpythonu3 AS $$ from neo4jPg import neo4jPGFunction for result in neo4jPGFunction.cypher_default_server(plpy, query, params): yield result $$; CREATE OR REPLACE FUNCTION cypher(query text, params text, server text) RETURNS SETOF json LANGUAGE plpythonu3 AS $$ from neo4jPg import neo4jPGFunction for result in neo4jPGFunction.cypher_with_server(plpy, query, params, server): yield result $$; CREATE OR REPLACE FUNCTION cypher(query text, params text, server text, dbname text) RETURNS SETOF json LANGUAGE plpythonu3 AS $$ from neo4jPg import neo4jPGFunction for result in neo4jPGFunction.cypher_with_server(plpy, query, params, server, dbname): yield result $$; ---- This define three functions : * `cypher(query, params, server, dbname)` : make a cypher query on the database `dbname` of the foreign server specify (server is the name of the foreign server. Example `multicorn_neo4j`) : `SELECT * FROM cypher('MATCH (n)-[r]->(m) RETURN n,r,m LIMIT 10', '{}', 'multicorn_neo4j', 'myDb')` * `cypher(query, params, server)` : make a cypher query on the foreign server specify (server is the name of the foreign server. Example `multicorn_neo4j`) : `SELECT * FROM cypher('MATCH (n)-[r]->(m) RETURN n,r,m LIMIT 10', '{}', 'multicorn_neo4j')` * `cypher(query, params)` : make a cypher query on the first foreign server defined, with neo4j query parameter : `SELECT * FROM cypher('MATCH (n:Movie) WHERE n.title CONTAINS $name RETURN n.title AS title LIMIT 10', '{"name":"Matrix"}');` * `cypher(query)` : make a cypher query on the first foreign server defined : `SELECT * FROM cypher('MATCH (n)-[r]->(m) RETURN n,r,m LIMIT 10')` === How to use it The JSON produced follow your cypher return statement : the key of the first json level correspond to you the name of yours returns, and the value to json serialisation fo the object. If the return object is a Node, it's serialize as a JSON object like this : { id:X, labels : [], properties: { object } } Example : ---- mydatabase=# SELECT cypher FROM cypher('MATCH (n:Location) RETURN n LIMIT 10'); cypher {"n":{"labels": ["Location"],"properties": {"y": 1906520.0, "x": 1158953.0, "name": "025XX W AUGUSTA BLVD"}}} {"n":{"labels": ["Location"],"properties": {"y": 1842294.0, "x": 1175702.0, "name": "094XX S HARVARD AVE"}}} {"n":{"labels": ["Location"],"properties": {"y": 1931163.0, "x": 1152905.0, "name": "047XX N KIMBALL AVE"}}} {"n":{"labels": ["Location"],"properties": {"y": 1887355.0, "x": 1149049.0, "name": "041XX W 24TH PL"}}} {"n":{"labels": ["Location"],"properties": {"y": 1869892.0, "x": 1176061.0, "name": "001XX W 53RD ST"}}} {"n":{"labels": ["Location"],"properties": {"y": 1862782.0, "x": 1180056.0, "name": "063XX S DR MARTIN LUTHER KING JR DR"}}} {"n":{"labels": ["Location"],"properties": {"y": 1908312.0, "x": 1175281.0, "name": "001XX W DIVISION ST"}}} {"n":{"labels": ["Location"],"properties": {"y": 1899998.0, "x": 1139456.0, "name": "0000X N PINE AVE"}}} {"n":{"labels": ["Location"],"properties": {"y": 1908407.0, "x": 1176113.0, "name": "012XX N STATE PKWY"}}} {"n":{"labels": ["Location"],"properties": {"y": 1888098.0, "x": 1148713.0, "name": "023XX S KEELER AVE"}}} (10 lignes) ---- If the return object is a relation, it's serialize as a JSON object like this :` { type : "MY_TYPE", properties: { object } }` Example : ---- mydatabase=# SELECT cypher FROM cypher('MATCH (n)-[r]->(m) RETURN r AS relation LIMIT 10'); cypher {"relation":{"type": "IS_TYPE_OF","properties": {}}} {"relation":{"type": "IS_TYPE_OF","properties": {}}} {"relation":{"type": "IS_LOCALIZED_AT","properties": {}}} {"relation":{"type": "HAS_ARREST","properties": {}}} {"relation":{"type": "IS_DOMESTIC","properties": {}}} {"relation":{"type": "IN_YEAR","properties": {}}} {"relation":{"type": "IS_IN_CATEGORY","properties": {}}} {"relation":{"type": "IS_TYPE_OF","properties": {}}} {"relation":{"type": "IS_TYPE_OF","properties": {}}} {"relation":{"type": "IS_TYPE_OF","properties": {}}} (10 lignes) ---- Of course, for primitive type are also supported, and you can mix all of this : SELECT cypher FROM cypher('MATCH (y:Year)-[r]->(m) RETURN y.value AS year, r, m LIMIT 10'); ---- mydatabase=# SELECT cypher FROM cypher('MATCH (y:Year)-[r]->(m) RETURN y.value AS year, r, m LIMIT 10'); cypher {"year":2015,"r":{"type": "IN_YEAR","properties": {}},"m":{"labels": ["Crime"],"properties": {"id": "10016718"}}} {"year":2015,"r":{"type": "IN_YEAR","properties": {}},"m":{"labels": ["Crime"],"properties": {"id": "10017521"}}} {"year":2015,"r":{"type": "IN_YEAR","properties": {}},"m":{"labels": ["Crime"],"properties": {"id": "10018383"}}} {"year":2015,"r":{"type": "IN_YEAR","properties": {}},"m":{"labels": ["Crime"],"properties": {"id": "10087834"}}} {"year":2015,"r":{"type": "IN_YEAR","properties": {}},"m":{"labels": ["Crime"],"properties": {"id": "10017190"}}} {"year":2015,"r":{"type": "IN_YEAR","properties": {}},"m":{"labels": ["Crime"],"properties": {"id": "10017379"}}} {"year":2015,"r":{"type": "IN_YEAR","properties": {}},"m":{"labels": ["Crime"],"properties": {"id": "10017246"}}} {"year":2015,"r":{"type": "IN_YEAR","properties": {}},"m":{"labels": ["Crime"],"properties": {"id": "10017248"}}} {"year":2015,"r":{"type": "IN_YEAR","properties": {}},"m":{"labels": ["Crime"],"properties": {"id": "10017208"}}} {"year":2015,"r":{"type": "IN_YEAR","properties": {}},"m":{"labels": ["Crime"],"properties": {"id": "10017211"}}} (10 lignes) ---- === The power of PG & JSON PG 9.4 have a function name `json_to_record`, that convert our json into a collection of typed tuple ! ---- mydatabase=# SELECT year, id FROM cypher('MATCH (y:Year)<-[r]-(m) RETURN y.value AS year, m.id AS id LIMIT 10') , json_to_record(cypher) as x(year int, id varchar) year | id ------+---------- 2015 | 10016718 2015 | 10017521 2015 | 10018383 2015 | 10087834 2015 | 10017190 2015 | 10017379 2015 | 10017246 2015 | 10017248 2015 | 10017208 2015 | 10017211 (10 lignes) ---- == Run test You need to have **docker compose** installed. Then you just have to run the `./scripts/tests.sh` script. == More Examples If you want to see more examples, just take a look in folder `test/sql` == kb * To enable log in postgres : `SET client_min_messages = DEBUG` * To enable query log in Neo4j : `CALL dbms.setConfigValue("dbms.logs.query.enabled", "true")` * To open an `psql` session on the database `neo4j` with debug messages : `env PGOPTIONS='-c client_min_messages=DEBUG' psql neo4j` * Alter an option of foreign table (replace ADD by SET or DROP): `ALTER FOREIGN TABLE actedin OPTIONS ( ADD estimated_rows '-1');` * Display the detail of a table : `\d+ person`